

B.E. / B.Tech (Full Time) DEGREE END SEMESTER EXAMINATIONS, NOV / DEC 2013

Electronics and Communication Engineering Branch

S IXTH SEMESTER

EC 511/EC9047 - POWER ELECTRONICS

(REGULATIONS 2004/2008)

Time: 3 Hours

Max. Marks: 100

Answer All Questions

Part-A

 $(10 \times 2 = 20 \text{ marks})$

- 1) What is the function of anti-parallel diodes in MOSFET?
- 2) What is the necessity for connecting power semiconductor devices in series?
- 3) What are the effects of overlap in a fully controlled rectifier?
- 4) Write the practical applications of Dual converters.
- 5) What are the various configurations of resonant power supplies?
- 6) What are the demerits of a linear power supply when compared to SMPS?
- 7) Mention the limitations of series inverters.
- 8) Draw the circuit of a current source inverter and its output waveforms for a star connected load.
- 9) What is meant by relays? Why we use relays in power systems?
- 10) Write short notes about the DC motor drives.

Part-B

 $(5 \times 16 = 80 \text{ marks})$

- 11) (a) (i) Draw the two-transistor model of a thyristor and explain its operations (8)(ii) Explain the effect of adding a free wheeling diode across the output terminals of a
 - full converter on its output voltage (8)
- 12) (a) A single-phase ac voltage controller circuit shown in figure 1 has a resistive load of R = 10 Ω and the input voltage is VS = 120 V, 60 Hz. The delay angle of thyristor T1 is $\alpha = \pi / 2$. Determine (a) the rms value of output voltage Vo, (b) the input power factor PF, and (c) the average input current. (16)

Figure -1

(b) Explain in detail about the operation of three phase full converter circuit with near	diagrams
and then derive the rms output voltage equation.	(16)
13) (a) A dc chopper is connected to an inductive load with a resistance of 5Ω ar	nd an input
voltage of 300V. The on time and off time of the chopper are 20ms	and 10ms
respectively. Estimate the duty ratio,chopping frequency, average load v	oltage and
average load current.	(16)
(or)	
(b) Explain in detail about the Buck type switching-mode regulators operation	ı with neat
diagrams; derive the equations for switching period and capacitor voltage.	(16)
14) (a) Calculate the output frequency of the series inverter with the following parameters	eters:
Inductance L =6mH, Capacitance C = 1.2 μ F and the load resistance R = 100) Ω. Take
$T_{OFF} = 0.2$ ms.	
i) Find the range of output frequency	
a) If the load resistance R is varied from 40 Ω to 140 Ω	
b) If T _{OFF} is varied from 0.1ms to 0.4ms	
ii) What is the maximum possible output frequency?	(16)
(or)	
(b) With the necessary explanation and equations, write the notes on following ite	ems:-
(i) Single pulse-width modulation	(8)
(ii) Multiple pulse-width modulation	(8)
15. (a) Explain in detail about the Induction motor drives; How it applies in the power	systems?
	(16)
(or)	
(b) Write short notes about the following items:-	
(i) Solid state relays	(8)
(ii) Micro-electronic relays	(8)