Roll					
No.	. :				

B.E. / B.Tech (Full Time) DEGREE END SEMESTER EXAMINATIONS, NOV / DEC 2011

ELECTRONICS AND COMMUNICATION ENGINEERING BRANCH

FOURTH SEMESTER

EC 9252 - ELECTRONIC CIRCUITS - II

(REGULATIONS 2008)

Time: 3 Hours

Max. Marks: 100

Answer All Questions

Part-A

 $(10 \times 2 = 20 \text{ Marks})$

- 1) Give brief note on frequency compensator.
- 2) List the properties of negative feedback amplifier.
- 3) State the concept of Barkhausen criteria.
- 4) Write short notes about the Franklin oscillator.
- 5) Differentiate the single tuned and the multiple tuned amplifier circuits.
- 6) List the uses of transformers.
- 7) List the applications of astable multivibrator.
- 8) Write short notes on current sweep generators.
- 9) State and explain any two switching characteristics of IGBT.
- 10) Define the term ripple factor.

Part-B

 $(5 \times 16 = 80 \text{ Marks})$

11. (a)

(i) Derive the input impedance R_{if} of a voltage series and current shunt feedback amplifiers.

(8)

(ii) Prove that "Bandwidth with feedback of (1+Aβ) times the bandwidth without feedback".

(8)

12.

(a) With the circuit of Colpitts oscillator, explain the working of oscillation conditions and derive the frequency of oscillation. (16)

(or)

- (b) (i) Explain in detail about the RC phase shit oscillator and derive the frequency of oscillation. (10)
 - (ii) Find the operating frequency of a Hartley oscillator if $L_1 = 50 \mu H$, $L_2 = 1 mH$ and mutual inductance between the coils $M = 10 \mu H$ and C = 10 PF. (6)

•		•
•	~	١.
4	а	.,

- (i) A class-C tuned amplifier has R_L = 12 KΩ and tank circuit Q = 120.
 Calculate the tank circuit values of L and C. Assume V_{CC} is 40 V, resonant frequency is 10 MHz and the worst case power dissipation is 40 mW.
- (ii) Explain the in detail about the stagger tuned amplifiers.

(6)

(or)

(b) Describe in detail about the analysis of tuned amplifier's stability issues using neutralization techniques. (16)

14)

- (a) Describe with circuit diagram operation of monostable multivibrator using BJT.
 Derive the expression for ON time. Draw the waveforms at all terminals. (16)
- (b) With neat circuit diagram, explain the operation of Schmitt trigger. Draw the waveforms at all terminals. (16)
- 15. (a) With neat diagram, explain the operation of full wave rectifier with capacitive filter and derive the expression for ripple factor. (16)

(or)

(b) Explain in detail about the DC – DC conversion using Buck – Boost converter. (16)