21/11/13						
2						
	Roll No.					

B.E / B.Tech (Full Time) DEGREE END SEMESTER EXAMINATIONS, NOV / DEC 2013

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

10

3rd Semester

EE8302 - ELECTROMAGNETIC THEORY

(Regulation 2012)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART-A (10 x 2 = 20 Marks)

- 1. Calculate the volume of a parallel-piped formed by vectors \vec{A} , \vec{B} and \vec{C} such that $\vec{A} = 2\vec{a}_x + \vec{a}_y 2\vec{a}_z$, $\vec{B} = -\vec{a}_x + 3\vec{a}_y + 5\vec{a}_z$, $\vec{C} = 5\vec{a}_x 2\vec{a}_y 2\vec{a}_z$
- Write an expression for a position vector at any point in space in the rectangular coordinate system. Then transform the position vector into a vector in the cylindrical coordinate system.
- 3. Find E at any point 'P' due to an isolated point charge 'q' using Gauss's Law.
- 4. Calculate the capacitance per Km between a pair of parallel wires each of diameter 1cm at a spacing of 50cms.
- 5. Compare the different magnetic materials.
- 6. What is the practical significance of Lorentz's Force?
- 7. A velocity selector is used to select alpha particles of energy 200keV from a beam containing particles of several energies. The electric field strength is 800kV/m. What must be the magnetic field strength? The mass of the alpha particle is 6.68 x 10⁻²⁷kg.
- 8. A parallel-plate capacitor with plate area of 5cm^2 and plate separation of 3mm has a voltage 50 sin $10^3 t$ V applied to its plates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$.
- 9. What is the skin depth of a 2mm radius aluminium round conductor operating at 50Hz and 1MHz. The conductivity of aluminium is 3.55 x 10⁷ S/m.
- 10. A plane wave travelling in air is normally incident on a block of paraffins with ε_r = 2.3. Find the reflection co-efficient.

$Part - B (5 \times 16 = 80 \text{ marks})$

- 11. Starting from the Fundamental Law, derive the set of Maxwell's Equation in Integral and Differential form. (16)
- 12. a) (i) Evaluate $\oint \mathbf{r.ds}$ over the closed surface of the cube bounded by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ where $\overline{\mathbf{r}}$ is the position vector of any point on the surface of the cube (10)

(ii) State and prove the Stoke's theorem (6)

(OR)

- b) (i) Verify the divergence theorem for a vector field $D = 3x^2 \, \overline{a}_x + (3y + z) \, \overline{a}_y + (3z x) \, \overline{a}_z$ in the region bounded by the cylinder $x^2 + y^2 = 9$ and the planes x = 0, y = 0, z = 0 and z = 2. (10)
 - (ii) Explain the various sources and applications of electromagnetic fields. (6)
- 13. a) Explain dielectric polarization and hence obtain an expression for electric field intensity and potential of a dipole. (16)

(OR)

- b) (i) A thin annular disc of inner radius 'a' and outer radius 'b; carries a uniform surface charge density p_s . Determine the electric field intensity at any point on the 'z' axis when $z \ge 0$. (12)
 - (ii) Determine the potential difference between two points due to a point charge 'q' at the origin. (4)
- 14. a) (i) State and prove Boundary condition in a magnetostatic field (8)
 - (ii) Derive an expression for magnetic vector potential. (8)

(OR)

- b) (i) An air co-axial transmission line has a solid inner conductor of radius 'a' and a very thin outer conductor of inner radius 'b'. Determine the inductance per unit length of the line. (12)
 - (ii) Derive ohms law from field theory concept. (4)
- 15. a) Obtain the electromagnetic wave equation for free space in terms of electric field and explain the wave propagation with necessary parameters. (16)

(OR)

- b) (i) Derive Poynting theorem from Maxwell's equation and explain (8)
 - (ii) A uniform plane wave propagating in a medium has

$$\vec{E} = 2e^{-\alpha z} \sin (10^8 t - \beta z) \vec{a}_y \text{ V/m}$$

If the medium is characterized by $\varepsilon_r = 1$, $\mu_r = 20$, and $\sigma = 3$ S/m, find α , β , and H. (8)
