

1 1	1		1		
1 1				i .	
1 1	1				
1 1				•	

B.E./B.Tech (Full-Time) DEGREE END SEMESTER EXAMINATION, APR/MAY 2012

Mechanical Engineering BRANCH

Seventh Semester- REGULATIONS 2004

ME 516 - COMPUTATIONAL FLUID DYNAMICS

Time: Three hours

Maximum: 100 marks

Answer ALL questions Part A – $(10 \times 2 = 20 \text{ marks})$

- 1. Give example of a parabolic equation.
- 2. Write down the Neumann boundary condition.
- 3. Write down the first order forward difference equation for temperature.
- 4. List down some direct methods of solving equations.
- 5. State any two merits of finite volume method over finite difference method.
- 6. What is ADI method?
- 7. What is conservativeness of a discretisation scheme?
- 8. What do you mean by structured grid?
- 9. What is Prandtl's mixing length.
- 10. Define turbulence.

Part B – $(5 \times 16 = 80 \text{ marks})$

- 11. An iron rod length = 6 cm and d=1.5 cm with thermal conductivity k=50 W/m.K protrudes from a wall and exposed to air at an ambient T_{∞} = 23 °C and h= 100 W/m²K. The base of the rod is at T_0 =350°C and the tip is insulated. Assuming 1D steady state flow, calculate the temperature distribution along the length of the rod using finite difference scheme.
- 12.a) Explain the various iterative methods of solving algebraic equations with example.

(Or)

- 12b) Derive the finite difference formulation for 1D & 2D heat conduction equations using forward, backward and central difference schemes.
- 13. a) Derive the continuity equation is Cartesian co-ordinates.

(Or)

b) Write down the Navier-Stokes equation in 2D and in X & Y direction. Derive the same in Cartesian co-ordinates.

14.a) Derive the finite difference equation for a 1D transient heat conduction in a slab using explicit scheme (16)

(Or)

- b) A property Φ is transported by means of convection and diffusion through the 1D domain. The governing equation is $\frac{d}{dx}(\rho u \varphi) = \frac{d}{dx}(\Gamma \frac{d\varphi}{dx})$. The boundary conditions are Φ_0 =1 at x=0 and Φ_0 =0 at x=L. Using 5 equally spaced cells and the central difference scheme calculate the distribution of Φ as a function x for u= 3 m/s using finite volume method. Assume L= 1 m, ρ =1.2 kg/m³ and Γ =0.1 kg/ms
- 15.a) Discuss the characteristics of turbulent flow. What is the use of turbulence? models. Explain the k-ε turbulence model in detail (4+2+10)

(Or)

b) What is the necessity of SIMPLE algorithm? Derive the SIMPLE algorithm and deduce its variants.