

14/12/24 (AN)

B.E (FT) END SEMESTER EXAMINATIONS – NOV / DEC 2024		
Computer Science and Engineering		
Seventh Semester		
CS6018 – IMAGE PROCESSING		
(Regulation 2018 - RUSA)		
Time: 3 Hours	Answer ALL Questions	Max. Marks 100
Note: Assume data, if required		
PART-A (10 x 2 = 20 Marks)		
1.	How is an analog image converted to a digital image?	2
2.	State the purpose of a colour model. Give two examples of colour models.	2
3.	State and prove the properties exploited in FFT algorithms.	2
4.	How is periodic noise handled?	2
5.	What is an image pyramid?	2
6.	Illustrate the two types of error encountered in delta modulation.	2
7.	Compare and contrast first order derivative and second order derivative in the context of its application in edge detection.	2
8.	What is the role of Principal Component Analysis in Image Processing?	2
9.	Give two applications of clustering.	2
10.	Compare and contrast watermarking and steganography.	2
PART – B (8 x 8 = 64 marks)		
(Answer any 8 questions)		
11.	Explain the steps involved in digital image processing with a neat block diagram and an example technique for each step.	8
12.	Explain eight File Formats bringing forth the features of the file format and the scenario in which the file format is most appropriate.	8

13. Illustrate histogram specification by performing histogram specification of the image A, assuming the target image as B.

8

0	2	1	3	4
1	3	4	3	3
0	1	3	1	4
3	1	4	2	0
0	4	2	4	4

Image A

2	1	2	1	0
3	3	2	4	4
1	3	2	4	4
0	0	3	2	1
1	3	1	4	0

Image B

14. Consider the following image G. Find the response of 4 types of mean filters and 4 types of order statistics filters on the pixel (2,2).

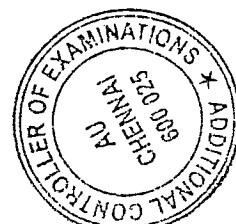
8

0	1	0	6	7
2	0	1	6	5
1	1	7	5	6
1	0	6	6	5
2	5	6	7	6

Image G

15. Derive the Haar kernel for N=8.

8


16. Illustrate Huffman encoding and arithmetic coding on the given image F with 5 gray levels.

8

180	160	160	140	120
110	110	120	140	120
110	140	120	120	140
120	160	160	170	170
170	120	110	140	110

Image F

17.	<p>Illustrate the following algorithms on the image F using the predicate $P(R) = \max\{f(x,y)\} - \min\{f(x,y)\} \leq T$, where max and min are the maximum and minimum defined over the region concerned and the threshold $T = 3$.</p> <p>a) Region growing with $f(4,1)$ and $f(6,3)$ as seed points b) Region splitting</p> <table border="1"> <tr><td>1</td><td>1</td><td>2</td><td>6</td><td>7</td><td>3</td><td>6</td><td>7</td></tr> <tr><td>2</td><td>2</td><td>1</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td></tr> <tr><td>1</td><td>1</td><td>0</td><td>3</td><td>3</td><td>4</td><td>6</td><td>7</td></tr> <tr><td>0</td><td>3</td><td>0</td><td>1</td><td>2</td><td>6</td><td>4</td><td>5</td></tr> <tr><td>1</td><td>1</td><td>2</td><td>0</td><td>2</td><td>5</td><td>6</td><td>5</td></tr> <tr><td>0</td><td>0</td><td>2</td><td>6</td><td>4</td><td>6</td><td>5</td><td>7</td></tr> <tr><td>1</td><td>1</td><td>1</td><td>7</td><td>3</td><td>5</td><td>4</td><td>6</td></tr> <tr><td>2</td><td>3</td><td>6</td><td>5</td><td>6</td><td>5</td><td>6</td><td>7</td></tr> </table> <p style="text-align: center;">Image F</p>	1	1	2	6	7	3	6	7	2	2	1	7	6	5	4	3	1	1	0	3	3	4	6	7	0	3	0	1	2	6	4	5	1	1	2	0	2	5	6	5	0	0	2	6	4	6	5	7	1	1	1	7	3	5	4	6	2	3	6	5	6	5	6	7	4+4
1	1	2	6	7	3	6	7																																																											
2	2	1	7	6	5	4	3																																																											
1	1	0	3	3	4	6	7																																																											
0	3	0	1	2	6	4	5																																																											
1	1	2	0	2	5	6	5																																																											
0	0	2	6	4	6	5	7																																																											
1	1	1	7	3	5	4	6																																																											
2	3	6	5	6	5	6	7																																																											
18.	Explain any four feature measures under each of the three broad categories of features.	8																																																																
19.	Explain k-nearest neighbor classifier and linear classifiers in detail with respect to image classification.	8																																																																
20.	Explain the application of image processing in Remote sensing.	8																																																																
21.	<p>a) Explain the different types of redundancy exploited by image compression and the mechanism to handle each type. b) Explain transform coding with a neat block diagram.</p>	4+4																																																																
22.	Explain subband image coding using a two-dimensional four-band filter bank and decoding with a neat block diagram.	8																																																																
PART – C (2 x 8 = 16marks)																																																																		
23.	Design a system that can be used in computer aided diagnosis of a specific type of disease. Choose a disease of your choice. Draw the architecture and give the detailed design.	8																																																																
24.	<p>For each of the scenarios given below identify the suitable image processing approach and explain the same.</p> <p>a) Text image corrupted by spot shading b) Mask mode radiography</p>	8																																																																

