

31112124

RollNo. _____

--	--	--	--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. (Full Time) - END SEMESTER EXAMINATIONS, NOV / DEC 2024

Computer Science and Engineering

Semester IV

CS6202 & Theory of Computation

(Regulation 2018 - RUSA)

Time: 3 Hrs

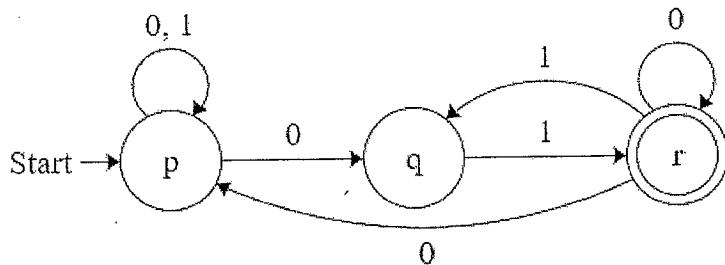
Max.Marks: 100

CO1	Classify languages based on Chomsky hierarchy
CO2	Identify the class of language and design automata or Type x grammar
CO3	Prove equivalence of the different language representations within a class of the Chomsky hierarchy
CO4	Identify the undecidable problems and their class of languages
CO5	Apply and prove a given language is decidable or undecidable

BL – Bloom's Taxonomy Levels

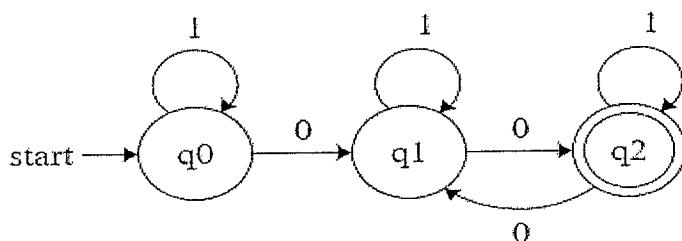
(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A (10 x 2 = 20 Marks)


(Answer all Questions)

Q. No.	Questions	Marks	CO	BL
1.	Design a DFA accepting the language that set of all strings of 0's and 1's containing 011 as a substring.	2	2	2
2.	Design a ϵ -NFA for the set of strings consisting of zero or more a's followed by zero or more b's followed by zero or more c's.	2	3	4
3.	Write a regular expression for the set of all strings with alternating 0's and 1's.	2	3	2
4.	Find the reversal of a regular expression $(0+1)^*01$ by applying reversal operations of regular expression.	2	2	3
5.	Write a context-free grammar for odd length palindromes.	2	3	1
6.	Show that the grammar $E \rightarrow E+E \mid E^*E \mid (E) \mid id$ is ambiguous.	2	3	2
7.	Define the pumping lemma for context-free languages.	2	4	4
8.	What is halting problem of a Turing machine?	2	5	2
9.	Prove that the complement of recursive language is recursive.	2	4	3
10.	What are the actions performed in one move of a multi-tape Turing Machine?	2	5	1

PART- B (8 x 8 = 64 Marks)
 (Answer any EIGHT questions)


Q. No.	Questions	Marks	CO	BL
--------	-----------	-------	----	----

11. Convert the following NFA to a DFA.

12. i) Convert the regular expression $(0+1)^*10(01+1)^*$ to automata. **4+4** 2 3
 ii) Define pumping lemma for regular languages and prove the language $L=\{ww \mid w \text{ is a string of 0's and 1's}\}$ is not regular.

13. Find the regular expression equivalent to the following DFA.



14. Construct the minimum-state automata equivalent to DFA given by transition table. **8**

States/ Input	0	1
$\rightarrow A$	B	F
B	G	C
$*C$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

15. Prove that if L is a CFL and R is a regular language, then $L \cap R$ is a CFL. **8** 3 2
 16. Write the steps to convert the CFG to PDA. Convert the following grammar to a PDA.

$E \rightarrow I \mid E^* \mid E + E \mid (E), I \rightarrow a \mid b \mid la \mid lb \mid l0 \mid l1$

17. Convert the grammar $S \rightarrow AA \mid 0, A \rightarrow SS \mid 1$ to a GNF. 8 2 4

18. Design a pushdown Automata for the language $L = \{0^n 1^m \mid n \leq m \leq 2n\}$. Show the instantaneous description of the PDA for the string 00111. 8 3 4

19. Design a deterministic PDA to accept the language $L_{wcw^R} = \{ wcw^R \mid w \text{ is in } (0+1)^*\}$. Show whether the input 110c011 is accepted by your DPDA. 8 4 3

20. Design a Turing machine to accept the language $L = \{ 0^n 1^n \mid n \geq 1 \}$. 8 4 4

21. Proper subtraction $m-n$ is defined by $\max(m-n, 0)$, that is, the result is $m-n$ if $m \geq n$ and 0 if $m < n$. Design a Turing machine to compute proper subtraction. 8 5 3

22. Prove that If both language L and its complement are RE, then L is recursive. 8 5 2

PART- C (2 x 8 = 16 Marks)

Q. No.	Questions	Marks	CO	BL
23.	<p>Begin with the grammar:</p> $S \rightarrow 0A0 \mid 1B1 \mid BB$ $A \rightarrow C$ $B \rightarrow S \mid A$ $C \rightarrow S \mid \epsilon$ <p>Eliminate ϵ-productions, unit productions, and useless symbols in safe order. Put the resulting grammar into Chomsky Normal Form.</p>	8	3	3
24.	Explain the construction of an instance of post's correspondence problem (PCP) from an instance of modified PCP (MPCP) with example. 8 5 4			
